Copyright (c) メンズアイテム All Rights Reserved.

FX口コミ

FX口コミ



FX口コミFX口コミ



FXの口コミ掲示板などです



FX口コミ掲示板



FX取引



FX習得



FX書籍







用語

可換体(かかんたい、仏: corps commutatif)あるいは単に体(たい、英: field)[注 1]とは、零でない可換可除環、あるいは同じことだが、非零元全体が乗法の下で可換群をなすような環のことである。そのようなものとして体は、適当なアーベル群の公理と分配則を満たすような加法、減法、乗法、除法の概念を備えた代数的構造である。最もよく使われる体は、実数体、複素数体、有理数体であるが、他にも有限体、関数の体、代数体、p 進数体、などがある。



任意の体は、線型代数の標準的かつ一般的な対象であるベクトル空間のスカラーとして使うことができる。(ガロワ理論を含む)体拡大の理論は、ある体に係数を持つ多項式の根に関係する。他の結果として、この理論により、古典的な問題である定規とコンパスを用いた角の三等分問題(英語版)や円積問題が不可能であることの証明や五次方程式が代数的に解けないというアーベル・ルフィニの定理の証明が得られる。現代数学において、体論は数論や代数幾何において必要不可欠な役割を果たしている。